
J. Fluid Mech. (1998), vol. 354, pp. 239–276. Printed in the United Kingdom

c© 1998 Cambridge University Press

239

A numerical study of the evolution and structure
of a turbulent shear layer under a free surface

By W U - T I N G T S A I
Department of Oceanography, Taiwan Ocean University, Keelung, 202, Taiwan, ROC

(Received 7 October 1996 and in revised form 28 August 1997)

Results from direct numerical simulations of an unsteady turbulent shear layer with
a free surface are presented. The emphasis is on the interaction dynamics of the
free surface with the coherent vortices in the underlying turbulent shear flow as well
as the resulting free-surface signatures. Instantaneous vortex lines and isosurfaces
of enstrophy indicate that coherent horseshoe vortical structures emerge from the
random initial vorticity field. These horseshoe vortices impinge, break and reconnect
onto the free surface, and then appear as two vortex connections with opposite signs
on the surface. The two identified vortical structures correspond to ‘splatting’ and
‘swirling’ events, which have been observed in other experiments and simulations of
free-surface/turbulence flows. Though free-surface depressions form near the vertical-
vorticity centres in the connection processes, only a low correlation (≈ 50% to 60%)
is found between the free-surface roughness (vertical deformation) and the connected
normal vorticity. On the other hand, the free-surface curvatures and the tangential
free-surface vorticities are better correlated (≈ 80% to 90%). The balance of enstrophy
and the vorticity transport show that stretching and viscous dissipation along the
direction of the vorticity vector dominate the vortex dynamics near the free surface.
These two transport mechanisms are found to be responsible for the cancellation
of the spanwise vorticity of the horseshoe-vortex heads and the annihilation of the
surface-connected normal vorticities.

1. Introduction
The interaction between a free surface and the underlying turbulent flow has

recently been the subject of active research. This has mainly been provoked by the
increasing use in oceanic and naval research of novel remote-sensing instruments
that are sensitive to the microscale motions on or near the ocean surface. Another
motivation for such interest is the need to parameterize the air–water scalar exchange
rate. The transport of passive scalar, such as gas or heat, across the air–water
interface is generally controlled by the resistance within the near-surface turbulence
on the ocean side. An improved understanding and the predictive formulation of
such turbulent flow are both essential for the specification and development of the
near-surface turbulence model.

In the previous studies of the interaction of turbulence with the free surface, the
physical systems of the interaction processes can be categorized into the interaction
of grid-generated turbulence with a free surface, open-channel flow with a free
surface and a turbulent jet beneath a free surface. Examples of these studies include:
experiments of interaction between grid-generated turbulence and a free surface by
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Brumley & Jirka (1987) and Ölmez & Milgram (1992); numerical simulations of
the interaction of a flat (ideal) free surface with initially homogeneous and isotropic
turbulence by Perot & Moin (1995) and Walker, Leighton & Garza-Rios (1996);
numerical simulations of free-surface channel flows by Leighton et al. (1991), Lam
& Banerjee (1992), Handler et al. (1993), Komori et al. (1993), Borue, Orszag &
Staroselsky (1995) and Pan & Banerjee (1995); and experiments by Komori, Murakami
& Ueda (1989) and Rashidi & Banerjee (1988) among many others (see, for example,
the monograph by Nezu & Nakagawa 1993); and experiments of a turbulent jet
interacting with a free surface by Swean et al. (1989), Anthony & Willmarth (1992),
Madnia & Bernal (1993) and Walker, Chen & Willmarth (1995).

From a theoretical perspective, an analysis of the general features of turbulence
interacting with a free surface was given by Hunt (1984). Accordingly, for a clean free
surface with small deformation, the fluctuating shear stress induced on the surface is
also small, and the two-layer model of Hunt & Graham (1978) for the interaction
between a shear-free boundary and the turbulence is applicable. The theoretical
model decomposes the interaction process into a surface-influenced inviscid source
layer with thickness roughly the integral length scale of the free-stream turbulence and
a thin viscous layer next to the free surface. Within the source layer, the irrotational
motions around the impinging turbulent eddies are distorted by the free surface, and
the turbulent energy is redistributed from the vertical to the horizontal components
of the velocity. The viscous effect is confined within a thin sublayer of thickness
O(`eRe e

−1/2), where Re e is the Reynolds number based on the impinging eddy
velocity ue and the length scale `e. A small reduction in the horizontal velocity of
O(ueRe e

−1/2) is caused within this sublayer, and the rate of attenuation of the vertical
velocity is increased by O(Re e

−1/2).
In this work, as a canonical problem, the interactions among a free surface, a

mean shear flow and initially isotropic three-dimensional turbulent fluctuations are
studied by the direct numerical simulation of the flow. The physical process of the
canonical problem corresponds to a turbulent shear current beneath the air–water
interface where the mechanism that generates the shear layer, such as wind stress,
is no longer operative. Shear flow in the near region beneath the ocean surface
can be decomposed into wind- and wave-induced components (Wu 1975), and it
consists mainly of the wind-induced current at short fetches and of the wave-induced
transport at long fetches (Wu 1983). The former component of a shear layer, the
free-surface deformation of which is mild, is of particular interest in the present
study. For large-amplitude free-surface flows, breaking waves occur naturally, and the
turbulence is generated by surface breaking and the bubbles that may be produced.
At the present time, the development of a direct numerical simulation method for
such an oceanic flow is somewhat unrefined. For most of the calculations of free-
surface/turbulence flows to date, only the case of zero Froude number (free-slip flat
surface) (e.g. Leighton et al. 1991; Lam & Banerjee 1992; Perot & Moin 1995; Pan
& Banerjee 1995; Walker et al. 1996) and weakly nonlinear approximations of the
free-surface boundary conditions (Borue et al. 1995) have been considered. The only
fully nonlinear calculation of free-surface/turbulence flow is that of Komori et al.
(1993) although, in that study, only flows with small free-surface deformation were
simulated. In the present study, the effect of free-surface deformation is included
through weakly nonlinear approximations of the free-surface boundary conditions as
in Borue et al. (1995).

For turbulent shear flows, such as a turbulent boundary layer, organized vortical
structures in the vorticity field have previously been identified in both experiments
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and numerical simulations (see, for example, the review by Robinson 1991). It is
not surprising, therefore, that coherent vortices also arise from the turbulent shear
flow underneath the free surface and that they interact with the surface. Though this
issue has been addressed in some previous studies on the interaction of turbulence
with a free surface (e.g. Komori et al. 1989; Pan & Banerjee 1995), there has been
very little discussion of the detailed correlations between the surface signatures and
the underlying coherent vortical structures. For a free surface without contamination
or external shear stress, a normal connection of the vortex to the surface can be
explained by the kinematic conditions of vorticity on the free surface. However, even
the processes by which a vortex breaks and reconnects its ends to the free surface in
a laminar flow have been subject of many debates (Gharib 1994) and active research
(e.g. Gharib & Weigand 1996). In addition, the correlations between the free-surface
signatures and the connected and subsurface (unconnected) vortical structures have
been very little discussed. Hence, it is the objective of the present numerical study to
provide a better understanding of the interaction dynamics as well as the correlated
surface features in the interaction processes.

The paper is organized as follows. The mathematical formulation of the physical
process and the detailed numerical aspects of the simulation are presented in §2
and §3 respectively. To elucidate the blocking effect of the free surface, the balance
of turbulence energy and the length scales of turbulence near the free surface are
discussed in §4.1 and §4.2, respectively. The vertical distribution of the vorticity field
near the free surface is addressed in §4.3. Organized free-surface signatures arising
from the interaction of the underlying vortical flow with the free surface are presented
in §4.4. The possible correlations between the free-surface roughness and the vorticity
field are also discussed. The underlying horseshoe and surface-connected coherent
vortical structures are identified and confirmed in §4.5. The connecting processes of
the coherent vortices with the free surface are then considered in §4.6. Finally, in §4.7,
by examining the enstrophy balance and the vorticity transport, it is shown that the
dominant vortex dynamics near the free surface can be attributed to the interaction
of the coherent vortices with the free surface.

2. Mathematical formulation
The motion of a three-dimensional viscous incompressible bulk flow as well as the

free surface are considered here. The coordinate axes xi = (x1, x2, x3), moving with
the initial free-stream velocity U0 of the shear layer, are in the streamwise, spanwise
and vertical directions, with the corresponding velocities ui = (u1, u2, u3). All flow
variables are non-dimensionalized by the characteristic depth of the initial shear layer
D0, the free-stream velocity U0 and the density of the bulk fluid ρ. In the context of
a Newtonian incompressible bulk fluid, conservation of mass and momentum specify
that

ui,i = 0, (2.1)

and

ui,t + ujui,j + p,i −
1

Re
ui,jj = 0, (2.2)

where p is the dynamic pressure, Re = U0D0/ν is the Reynolds number, and ν is the
kinematic viscosity of the bulk fluid. The Einstein summation convention has been
adopted, and a comma denotes differentiation.

The physical conditions that there be no mass flux and conservation of linear
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momentum across the free surface x3 = η(x1, x2, t) give rise to the kinematic condition
and the dynamic conditions for the stress field on the free surface. Based on the
analyses of Tsai & Yue (1995) (see also Borue et al. 1995), the free-surface boundary
conditions are linearized by assuming a free-surface deformation of the order of
ε ∼ O(Fr2) and a free-surface boundary layer of thickness δ ∼ O(Re −1/2), with
δ2 � ε � δ � 1. Carrying out the perturbation expansion about the mean free
surface x3 = 0, the kinematic condition up to O(ε) is

η,t + (u1η),1 + (u2η),2 − u3 = 0, (2.3)

the normal-stress condition up to O(ε) is

− p+
η

Fr2
+

2

Re
u3,3 =

1

We
(η,11 + η,22), (2.4)

and the tangential-stress conditions in the x1- and x2-directions up to O(δ) are

u1,3 + ηu1,33 + u3,1 = 0, (2.5)

u2,3 + ηu2,33 + u3,2 = 0. (2.6)

The non-dimensional parameters in the boundary conditions are the Froude number
Fr = U0/(gD0)

1/2 and the Weber number We = ρU2
0D0/σ0, where g is the gravitational

acceleration and σ0 is the surface tension. The weakly nonlinear free-surface conditions
considered in the present study correspond to those physical processes where the
turbulence energy is larger than the wave energy. A direct numerical simulation of
the large-amplitude free-surface motions interacting with fully developed turbulence is
somewhat premature at this point. The present formulation of the problem, although
only considering weakly nonlinear interactions among waves while retaining fully
nonlinear interactions of the turbulence, is totally consistent and sufficient to capture
the interaction dynamics between the free surface and the underlying turbulence –
the main objective of the present study.

To derive the equation governing the energy conservation, the material time deriva-
tive of the kinetic energy of the flow integrated over the fluid volume V (≡ dEk(t)/dt)
is given by

D

Dt

∫
V

( 1
2
uiui)dV = −

∫
V

(uip),idV +
1

Re

∫
V

[ui(ui,j + uj,i)],jdV −
1

Re

∫
V

ui,j(ui,j + uj,i)dV .

(2.7)

Using the divergence theorem in conjunction with the free-surface boundary con-
ditions (2.3) to (2.6), the first and the second integrals can be simplified, and the
equation for the conservation of energy up to O(ε) becomes

D

Dt

∫
V

( 1
2
uiui)dV = − 1

2Fr2

∂

∂t

∫
S0

η2dS

− 1

We

∫
S0

η,t(η,11 + η,22)dS −
1

Re

∫
V

ui,j(ui,j + uj,i)dV , (2.8)

where S0 is the mean free surface, x3 = 0. The first term on the right-hand side of
(2.8) (≡ dEη/dt) represents the rate of change of the potential energy due to free-
surface motions. The second term (≡ dEσ/dt) stands for the work done by the surface
tension. The last term (≡ dEv/dt) represents the rate of energy dissipation caused by
viscous stresses. It should be pointed out that the equation of energy conservation
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(2.8), albeit a weakly nonlinear form of the fully nonlinear equations of motion, is the
exact energy equation for the equation of motion (2.2) and the boundary conditions
(2.3) to (2.6) and, as such, should be satisfied in the numerical computation.

3. Numerical simulation
3.1. Numerical method

The three-dimensional continuity equation (2.1) and the Navier–Stokes equation (2.2)
subject to the weakly nonlinear free-surface boundary conditions (2.3) to (2.6) are
solved numerically in a computational domain closed by imposing periodic conditions
in both the streamwise and spanwise directions, and by the mean free surface (x3 = 0)
and a free-slip boundary on the bottom (x3 = −L3). The flow variables u1, u2 and p
are arranged on the discrete grid system, while u3 is on the vertically staggered grids.
Both the continuity and Navier–Stokes equations are satisfied on the discrete grids
with u1, u2 and p arranged on them. The spatial-differential operators with respect to
x1 and x2 are approximated by the pseudo-spectra method, and the operators with
respect to x3 are approximated by the second-order finite-difference scheme.

A low-storage second-order Runge–Kutta method is used for time integrating the
Navier–Stokes equation (2.2) for ui and the kinematic free-surface condition (2.3)
for η. Continuity is ensured with the solution being a pressure Poisson equation
satisfied on the discrete grids. The pressure Poisson equation is obtained by taking
the divergence of the Navier–Stokes equation. The free-slip bottom gives rise to the
homogeneous Neumann condition of pressure for the Poisson equation. The normal-
stress free-surface condition (2.4) is used as a Dirichlet condition for pressure. An
additional solvability condition of the pressure Poisson equation, which is required
for the formulations with only the Neumann boundary conditions, is not needed in
the present formulation. The pressure Poisson equation is solved at each interval step
in the Runge–Kutta time integration.

The tangential-stress conditions (2.5) and (2.6) are satisfied implicitly in integrating
the Navier–Stokes equation. To evaluate the convection terms u3ui,3 and the dissipation
terms ui,33 in the i = 1, 2 Navier–Stokes equation at x3 = 0, the tangential-stress
conditions are used to extrapolate the velocities on the artificial grid above the
mean free surface. In order to maintain the second-order accuracy of the spatial
approximation, these terms are approximated by

δ(u3ui)

δx3

∣∣∣∣
x3=0

≡ Dcui

= − 1

24∆

(
23u3|1/2ui|1/2 − 21u3|−1/2ui|−1/2 − 3u3|−2/3ui|−2/3 + u3|−5/2ui|−5/2

)
, (3.1)

and

1

Re

δ2ui

δx2
3

∣∣∣∣
x3=0

≡ Ddui =
1

Re

1

12∆2

(
11ui|1 − 20ui|0 + 6ui|−1 + 4ui|−2 − ui|−3

)
, (3.2)

where ui|q (i = 1, 2) represents velocity ui at x3 = q∆, and ∆ is the vertical dis-
cretization. The velocities on the artificial grids above the free surface are evaluated
by

ui|1 = 3∆[ui,3]x3=0 − 3
2
ui|0 + 3ui|−1 − 1

2
ui|−2, (3.3)

and

u3|1/2 = 24
23
∆[ui,3]x3=0 + 21

23
u3|−1/2 + 3

23
u3|−3/2 − 1

23
u3|−5/2, (3.4)
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Figure 1. Real parts of the eigenvalues λc (———) and λd (− · − · −) of the operators Dc and Dd

as functions of non-dimensional grid size k∆.

where [ui,3]x3=0, i = 1, 2 is obtained from the tangential-stress conditions (2.5) and
(2.6), and [u3,3]x3=0 from the continuity equation (2.1). The horizontal velocities on
the staggered grids near the free surface are evaluated by

ui|1/2 = 1
16

(
5ui|1 + 15ui|0 − 5ui|−1 + ui|−2

)
, (3.5)

and

ui|−k/2 = 1
48

(
−3ui|k + 27ui|k−1 − 5ui|k−2 + ui|k−3

)
, (3.6)

where i = 1, 2, k = 1, 3 and 5.
It has been shown that the improper implementation of the tangential-stress condi-

tions may lead to numerical instabilities and ruin the computation (Tsai & Yue 1996).
The linear stability analysis of ui(x3, t) =

∑
k ûi(k, t)e

ikx3 for the operators Dc and Dd

yields dûi(k, t)/dt = λûi(k, t), where λ is the complex eigenvalue of the operator. The
numerical dissipation of the operator is positive when Re (λ) < 0. The real parts of
the eigenvalues λc and λd of the operators Dc and Dd, respectively:

Re (λc) = − u3|0
1152∆

(−135 + 228 cos k∆− 126 cos 2k∆+ 36 cos 3k∆− 3 cos 4k∆), (3.7)

and

Re (λd) =
1

Re

1

24∆2
(−73 + 78 cos k∆− 3 cos 2k∆− 2 cos 3k∆), (3.8)

as functions of k∆ are shown in figure 1, where ∆ ≈ 0.08, Re = 1000, u3|0 ≈ 0.01 in a
typical simulation of the turbulence in this study. The artificial dissipation induced by
the convection operator Dc remains negligible in the low-to-intermediate wavenumber
range. For high wavenumbers, however, it amplifies the short waves when u3|0 > 0
(dissipates when u3|0 < 0). Nevertheless, these amplified high-wavenumber modes
(when u3|0 > 0) are effectively damped by the physical dissipation of Ddui, which is
positive for the whole range of wavenumbers.

3.2. Initial condition

The initial free surface is assumed to be flat. The initial sheared turbulence field is
given by adding a three-dimensional fluctuating velocity field to a two-dimensional
shear flow: u1(x3) = 1 + (uc − 1) sech2(k0x3) (Mattingly & Criminale 1972). The
values of the profile parameters used are uc = 0.0012 and k0 = 0.88137, such that
(1−u1)/(1−uc) = 0.5 at x3 = −1. The inviscid linear stability analysis of such a shear



Turbulent shear layer under a free surface 245

layer in the presence of a free surface is also given by Triantafyllou & Dimas (1989).
In the present simulation, however, unstable modes are not superimposed onto the
mean flow to trigger an unstable evolution.

To ensure the solenoidal property, the initial fluctuating velocity field is expressed
in terms of vector streamfunctions. A three-dimensional vector field A0(x1, x2, x3) with
random magnitudes of the components is first generated. The Fourier amplitudes
Â0(k1, k2, k3) are redistributed according to a Gaussian filtering function:

Â1(k1, k2, k3) = Â0(k1, k2, k3) exp(−k2
j /k

2

j ), (3.9)

where kj is the cutoff wavenumber. The filtered vector field A1 is then multiplied by

a vertical variation function f(x3) = tanh4 x3/ cosh3 x3:

A(x1, x2, x3) = f(x3)A1(x1, x2, x3). (3.10)

The variation function f(x3) is chosen such that the initial turbulent fluctuating
intensities attenuate to very small values near the free surface to ensure that, initially,
there are no prescribed flow structures (see figure 11). The variation of the turbulence
intensity is roughly equal to the vertical gradient of the mean shear velocity, except
in the region near the free surface. With the curl of the vector field A(x1, x2, x3) taken,
the resulting velocity field satisfies the requirement of the solenoidal condition. The
initial random fluctuating velocity field is then obtained by rescaling the magnitudes
of the velocities such that the maximal horizontal-averaging turbulence velocity is u′0
(a given value).

3.3. Numerical and flow parameters

The normalized length, width and depth of the computational domain are 10.472,
10.472 and 4, respectively, with periodic conditions in the streamwise (x1) and span-
wise (x2) directions. The chosen length of the computational domain is around the
wavelength (wavenumber = 0.4) of the most unstable mode from the inviscid linear
stability analysis. The simulations are carried out with 1283 grid points. The time
step of the Runge–Kutta integration is 0.005. The cutoff wavenumbers for generating
the initial fluctuating velocity are k1 = k2 = 36π/10.472 and k3 = 7π/2, while the
initial maximal horizontal-averaging turbulence velocity is u′0 = 0.15. Based on the
characteristic depth of the shear layer and the free-stream velocity, the parameters of
the flow in the simulation are the Reynolds number Re = 1000, the Froude number
Fr = 0.707 and the Weber number We = 20. The chosen Froude and Weber numbers
correspond to a flow with σ0 ≈ 73 g s−2, D0 ≈ 3 cm and U0 ≈ 25 cm s−1.

Since the turbulence is homogeneous in the horizontal plane, the turbulent fluctu-
ating velocity is defined here as

u′i = ui − 〈ui〉, (3.11)

where 〈·〉 represents the averaging in the horizontal plane. The Taylor microscales
λij;α are defined as

λij;α(x3) =

[
〈(u′i)2〉
〈(u′j,α)2〉

]1/2

. (3.12)

For the Reynolds number simulated, based on the maximal turbulent velocity q ≡
〈u′iu′i〉1/2 ≈ 0.1 and the corresponding Taylor microscale λ ≡ 1

3
λii;1 ≈ 0.6, the Taylor

microscale Reynolds number Re λ ≡ qλ/ν at the end of the simulation (t = 60) is
about 60.
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Figure 2. One-dimensional energy spectra at x3 ≈ −0.813 with initial cutoff wavenumbers
k1 = k2 = 36π/10.472, k3 = 7π/2 and initial maximal turbulence velocity u′0 = 0.2 (- - - - -),

and k1 = k2 = 26π/10.472, k3 = 5π/2 and u′0 = 0.15 (———) for t = 10 (a), 20 (b), 30 (c) and
40 (d). For comparison, the initial spectra (t = 0; thin curves) are shown with the evolved spectra
(thick curves).

The Kolmogorov microscale, ηk ≡ (ν3/εk)
1/4, at t = 60 is approximately 0.082,

based on the kinetic-energy dissipation rate of εk = −dEk/dt ≈ 0.218. The horizontal
and vertical grid resolutions are 0.083 and 0.032, respectively. This means that the
turbulence in the bulk and near the free surface is well resolved.

3.4. Validation of the simulation

Since the initial turbulent velocity field is artificially imposed with only the solenoidal
condition being satisfied, it is necessary to determine whether there are any artifacts
of the initial conditions which persist as the flow evolves. This is verified through
experimentation with the calculations using different parameters in initializing the
flow, such as the cutoff wavenumber kj in (3.9), the vertical variation function f(x3) in
(3.10), the maximal initial horizontal-averaging turbulence velocity u′0 and the random
vector field. Examples of such numerical experiments showing the evolution (t = 10,
20, 30 and 40) of the normalized energy spectra E(k, x3) at various depths with different
parameters (k1 = k2 = 36π/10.472, k3 = 7π/2, u′0 = 0.15 and k1 = k2 = 26π/10.472,

k3 = 5π/2, u′0 = 0.2) in the initial fluctuating field are shown in figures 2–4. The
one-dimensional energy spectrum on a horizontal plane, E(k, x3), is evaluated by
integrating the spectrum tensor eii(k1, k2, x3) over the annuli in the (k1, k2)-plane,

E(k, x3) =
1

2

∫
eii(k1, k2, x3)ds(k), (3.13)
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Figure 3. Same as figure 2, but at x3 ≈ −0.188.
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Figure 4. Same as figure 2, but at x3 ≈ −0.031.
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Figure 5. Evolution of the one-dimensional turbulent-energy spectra at
x3 ≈ −0.344 (a) and −1.906 (b).

where k2 = k2
1 + k2

2 is the magnitude of the horizontal wavenumber vector kα, the
spectrum tensor,

eij(k1, k2, x3) =
1

4π2

∫∫
Rij(r1, r2, x3)e

−i(k1r1+k2r2)dr1dr2, (3.14)

and the two-point correlation tensor,

Rij(rα, x3) =
〈u′i(x)u′j(x+ rêα)〉
〈u′2i 〉1/2〈u′2j 〉1/2

, (3.15)

with α = 1 and 2. Initially, the peak wavenumbers and the magnitudes of the spectra
are all different for the two fluctuating velocity fields (as indicated by the thin curves)
throughout the entire depth from the free surface. Nevertheless, as time progresses
(thick curves), the two spectra become closer for the whole range of wavenumbers.
It is evident that the results demonstrate the convergence of the energy distributions
in the fluctuating velocities with different initial conditions from the submerged to
the shallow regions of the flow field. This also indicates that the simulated flow
reorganizes and, in so doing, eliminates the unphysical nature of the initial random
velocity field.

In addition to the above verification regarding the decay of artifacts in generating
the flow field, whether or not the flow initialized in such manner eventually becomes
representative of turbulence is examined here. Since the Navier–Stokes equation and
the kinematic condition of the free-surface elevation (2.3) have been integrated, the
validity of the simulated flow can be confirmed by exploring if the processes of energy
transfer and dissipation within the underlying turbulence and the interactions among
free-surface waves will eventually reach equilibrium status. This is demonstrated by
showing the time evolution of the turbulent energy spectra E(k, x3) at two depths as
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Figure 6. Evolution of the one-dimensional free-surface potential energy spectra.
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Figure 7. Evolution of the relative error of energy conservation γ(t).

shown in figure 5. After t = 20, the equilibrium range of the energy spectra reaches
a convergent distribution for both shallow and submerged depths, though the energy
spectra of the short-wavenumber motions continue to evolve. The potential energy
spectra of the free-surface deformation also reach equilibrium status quickly after
t = 10 (figure 6). Hence, it is concluded that as the integration of the momentum
equations proceeds, the simulated flow field adjusts itself from an initial artificial
random velocity field to realistic turbulence. The growth of the free-surface waves
generated by the underlying turbulence and the weakly nonlinear interactions among
the waves also reach a state of equilibrium.

In that there are no experimental data available to validate the simulation results,
the accuracy of the numerical data is controlled by monitoring the properties of
conservation principles, and also by comparing the qualitative properties near the
free surface with other open-channel flow simulation results (see §4.1). At the end of
the simulation, the mean free surface is conserved to be within 〈η〉 < 10−14, while
the maximal velocity divergence ui,i is less than 10−12. In order to monitor energy
conservation, (2.8) is integrated in time with the simulation. The evolution of the
relative error of the energy conservation, γ(t) ≡ |Ek(t)− Eη(t)− Eσ(t)− Eν(t)|t0/Ek(0),
is plotted in figure 7. After t ≈ 10, the rate of relative energy lost due to numerical
dissipation and errors becomes steady and approaches about 10−3. At the end of
the simulation, the energy lost is within 0.1% of the initial total energy. Energy
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Figure 8. Vertical distributions of statistics from two independent simulations (thick and thin

lines) at t = 20. (a) Root-mean-square average of the fluctuating velocity 〈u′i
2〉 of streamwise

(———), spanwise (- - - - -) and vertical (− · − · −) components. (b) Root-mean-square average of
the vorticity 〈ωi2〉 of streamwise (———), spanwise (- - - - -) and vertical (− · − · −) components.
(c) Pressure–strain turbulence production term Φ11 (———), Φ22 (- - - - -) and Φ33 (− · − · −). (d)
Turbulence dissipation term ε11 (———), ε22 (- - - - -) and ε33 (− · − · −).

conservation is another indicator of the nature of the flow simulated and the state of
equilibrium in the dynamic processes of the flow. The error in the energy conservation
increases rapidly in the initial stage of the simulation (t < 10). Such rapid loss of total
energy may be attributed to the initial adjustment of the flow field and the decay in
the imposed artifacts (figures 2 to 4). As equilibrium in the inter-scale energy transfer
is established (figure 5), energy conservation in the flow simulation should also be
reached.

4. Simulation results
For a non-stationary turbulent flow, the convergence of the turbulence statistics is

an issue which needs to be verified. To obtain ‘good’ statistics in numerical simulations
of interaction of initially homogeneous turbulence with a free-slip flat surface, Walker
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Figure 9. Vertical distributions of the streamwise mean velocity 〈u1〉 from t = 0 to 60.

et al. (1996) used short-time averaging and exploitation of the reflection and rotation
symmetries of the flow, whereas Perot & Moin (1995) performed independent compu-
tations (4 to 204 realizations depending on the Reynolds numbers). For the present
high-resolution (1283 grids) simulation, a large number of realizations is restricted by
the available computation resources, and most of the turbulence statistics discussed
below are from one realization.

To investigate the convergence of the turbulence statistics from the present numer-
ical simulations, two statistically independent computations were performed, and the
turbulence statistics were compared. Examples of typical turbulence statistics, which
will be discussed below, at the same time for the two independent simulations are
shown in figure 8. For the vertical distribution of the fluctuating velocity and vorticity
intensities (〈u′2i 〉 and 〈ω2

i 〉) and the viscous term in velocity fluctuation production
(−2〈u′i,ku′i,k〉/Re , see §4.1), differences between the two independent realizations are
quite smooth. Oscillatory differences are observed in the pressure–strain correlation
term (2〈p′u′i,i〉, see §4.1) in the submerged region. The distributions of statistics near
the free surface, which are of interest in the present study, however, are reasonably
convergent, and the two results are qualitatively identical for the flow features dis-
cussed below. This indicates that turbulence statistics are indeed representative, and
the conclusions drawn from these statistics in the following sections are not affected
by the number of realizations.

The simulation was carried out up to t = 60. The evolution of the vertical distribu-
tions of the streamwise mean velocity 〈u1〉 is shown in figure 9. After t = 20, the shear
profile of the mean flow becomes linear within the characteristic depth of the shear
layer. At the end of the simulation, the mean velocity at the free surface increases
to about 0.37. The evolution of turbulence production due to the mean shear of
P11 = −〈u′1u′3〉〈u1〉,3 is shown in figure 10 for t = 0, 30 and 60. The shear production
decays for the submerged layer, yet grows for the region near the free surface. This is
partially a result of the evolution of the mean flow from the initial hyperbolic profile
with inflection to the later linear profile (figure 9).

4.1. Turbulence energy near the free surface

Fluctuating turbulence intensities 〈u′i
2〉 are shown in figure 11 for t = 0, 30 and 60.

Initially, by construction, the turbulence field is isotropic, and all components of the
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Figure 12. Vertical distributions of the pressure–strain turbulence production term Φ11 (− · − · −),
Φ22 (———) and Φ33 (- - - - -) at t = 30 (a) and 60 (b).

turbulence intensities approach zero at the free surface. At later times (t = 30 and
60), the turbulence field near the free surface becomes effectively anisotropic and
two-dimensional, with a rapid attenuation of the vertical fluctuating velocities and
an accompanying increase in the horizontal turbulence intensities. The transfer of
the turbulence intensity to the spanwise component is more significant than to the
streamwise component near the free surface. The same observations were made by
Komori et al. (1982) and confirmed by Rashidi & Banerjee (1988) in experimental
measurements as well as by Lam & Banerjee (1992), Komori et al. (1993) and Handler
et al. (1993) from the numerical simulation results of open-channel flow.

The anisotropic behaviour of the near-surface turbulence was accounted for by
Komori et al. (1993) and Handler et al. (1993) by the considerably greater pressure–
strain production of spanwise than streamwise turbulence. The vertical distributions
of the pressure–strain turbulence production term Φii = 2〈p′u′i,i〉 near the free surface
of the present simulation results are shown in figure 12 at t = 30 and 60. The
variations are qualitatively similar to the simulation results of the open-channel flow
by Komori et al. (1993) and Handler et al. (1993). For the vertical turbulence, the
pressure–strain term Φ33 changes from production (> 0) to consumption (< 0) at
x3 ≈ 0.2 when approaching the free surface. This vertical position corresponds to the
thickness of the source layer (≈ integral lengthscale of the free-stream turbulence)
which is also estimated at 0.2 from figure 11. The Φ11 term is negative throughout
most of the depth but continues to increase as it approaches the free surface, where
it becomes positive. In comparison to Φ11, the spanwise pressure–strain term Φ22 is
positive throughout the depth. This explains the fact that the blocking effect of the
free surface is more significant to the spanwise than to the streamwise turbulence as
shown in figure 11.

Anisotropy in turbulence intensities near a free-slip boundary in the absence of
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mean shear was also observed in the numerical studies of the evolution of initial
homogeneous and isotropic turbulence by Perot & Moin (1995) and Walker et al.
(1996). (Perot & Moin also studied the interaction of turbulence with an idealized
permeable wall and a no-slip solid wall.) Perot & Moin discussed such anisotropy
near the surface in terms of the imbalance between the ‘splatting’ (upwelling) and
‘anti-splatting’ (downwelling) structures, which transfers energy from the vertical to
horizontal component and vice versa near the boundary. They postulated that such
an imbalance is mainly set by viscous effects, and the degree of anisotropy near the
free-slip boundary is maintained by reduced dissipation for the horizontal velocity
fluctuations. In a similar simulation to Perot & Moin’s but over a longer time period,
Walker et al. (1996) confirmed the conjecture of Perot & Moin. In addition, Walker et
al. asserted that the reduction in the pressure–strain transfer from the horizontal to
vertical velocity fluctuations caused by the boundary and the rapid decay rate of the
vertical component caused by dissipation also contribute to the degree of anisotropy
near the boundary.

The present simulation (and also those simulations of open-channel flow) differs
from the studies of Perot & Moin (1995) and Walker et al. (1996) in that mean
shear exists in the present turbulent flow. The scenario proposed by Perot & Moin
and Walker et al., however, is still applicable to the present flow since turbulence
production due to mean shear reduces to a very low level near the free surface
(figure 10). To examine the role of viscous dissipation in the redistribution of near-
surface turbulence energy, the vertical distributions of the turbulence dissipation rate
εii = −2〈u′i,ku′i,k〉/Re at t = 30 and 60 are shown in figure 13. The rates of dissipation
for the horizontal (streamwise and spanwise) velocity fluctuations decrease drastically
on approaching the free surface. (At t = 60, the horizontal dissipation rates reach their
maxima before reducing to their minima at the free surface. Such a local maximum
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rate in the horizontal dissipation is due to large velocity–strain rates caused by the
dominant vortex stretching of impinging coherent vortices near the free surface as
discussed in §4.4.) The dissipation rate of the vertical velocity fluctuation also reduces,
but then increases slightly and reaches a finite level at the free surface, though
the vertical velocity fluctuation itself reduces to a very small value. The dissipation
rates of horizontal and vertical fluctuations are comparable at the free surface. The
consequence is the relatively larger decay rate for the vertical velocity fluctuation
than for the horizontal components. These findings are consistent with the results
of Perot & Moin and Walker et al. for the interaction of initially homogeneous and
isotropic turbulence with a free-slip flat surface. In the energy-balance results of Perot
& Moin and Walker et al., pressure–strain redistribution was shown to be insignificant
in the interaction of horizontally homogeneous turbulence and the free surface. In
contrast, in the present turbulent shear flow, both pressure–strain and dissipation
terms appear to be the dominant turbulence transfer terms (see figures 12 and 13).
The simulation results of Handler et al. (1993) for an open-channel flow reveal the
same energy balance features near the free surface as those in the present results.
This suggests that anisotropic velocity fluctuations of the sheared turbulence beneath
a free surface can be attributed to both the effects of pressure–strain correlation and
the normalization of the tangential intensity by its free-stream value (as stated in
Perot & Moin 1995).

4.2. Integral lengthscale near the free surface

The two-point correlation tensor (3.15) is not expected to vanish as rα → ±∞ since
the length of the computational domain corresponds to the wavelength of the most
unstable mode of the given shear layer. This renders meaningless the definition of the
vertical distribution of the integral lengthscale,

Λij;α(x3) =

∫ ∞
0

Rij(rα, x3)drα. (4.1)

Accordingly, the vertical distribution of the integral lengthscale is estimated here by
the empirical expression

li(x3) = A
〈(u′i)2〉3/2
〈(u′i,1)2〉 (4.2)

(see e.g. Veeravalli & Warhaft 1989), where A ≡ Re /6. The vertical variations of the
integral lengthscale, li/A, at t = 20, 30, 40 and 60 are shown in figure 14. Owing
to the fact that the vertical turbulence component decays when approaching the
free surface, l3 also reduces to its smallest value on the free surface. The spanwise
integral lengthscale, l2, decreases first from its maximum at the depth of around the
thickness of the shear layer but then increases near the free surface and reaches
another maximum at the free surface. This also reveals the blocking effect of the free
surface discussed previously. The streamwise integral lengthscale, l1, is much larger
than l2 and l3 owing to the evolution of the two-dimensional unstable modes of the
shear flow. It, however, decreases to a finite value comparable to that of l2. This is
also revealed in the turbulence velocity variances (figure 11).

To further examine the vertical variations of the lengthscales, the one-dimensional
energy spectra at three depths, x3 ≈ −0.031, −0.281 and −0.719, are plotted in figure
15 for t = 30 and 50. For the high-wavenumber range, the slopes of the energy
spectra are nearly identical at the different depths thereby indicating that the small-
scale turbulence features and energy transport of the flow are similar for the whole
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depth. For the low-wavenumber mode, however, the energy of the large-scale mode
grows as it approaches the free surface. The origin of this change in the energy
spectrum for different depths is still not clear. It may be due to the backscatter of
kinetic energy from the high- to low-wavenumber modes when turbulence approaches
the free surface. However, spatial changes in the dissipation spectrum, or possibly
variations in the diffusive transport for different wavenumber components, can also
lead to such a shift.

4.3. Vorticity field near the free surface

The statistical features of the near-surface vorticity field are now focused upon. The
variances of the vorticity, 〈ω2

i 〉, are shown in figure 16 for t = 5, 30 and 60. In the
initial stage, by construction, all of the vorticity variances become negligible near the
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free surface. As the underlying turbulent shear flow develops and begins to interact
with the free surface, both streamwise- and spanwise-vorticity variances decrease
towards the free surface. At the free surface, the streamwise vorticity decreases to a
negligible value, whereas the vertical component remains finite. The variance of the
spanwise vorticity, nevertheless, reaches its maximum near the free surface but then
drops to a negligible value on the free surface. This rise in the spanwise vorticity near
the free surface, as a result of vorticity stretching caused by the blocking effect of the
free surface on the approaching coherent vortices, is explained in §4.6.

The time evolution of the normal vorticity variance 〈ω2
3〉 and the horizontal vorticity

variance 〈ω2
1 +ω2

2〉 on the mean free surface is shown in figure 17. The variance of the
vertical vorticity is much larger than that of the horizontal component throughout the
whole simulation time. The difference in the magnitude of the free-surface vorticity
component can be explained from the boundary conditions on the free surface. With
the perturbation expansions carried out about x3 = 0 and the free-surface dynamic
conditions (2.5) and (2.6) applied, the vorticity components on the mean free surface
are

ω1 = 2(u3,2)x3=0 + O(ε), (4.3)

ω2 = −2(u3,1)x3=0 + O(ε), (4.4)

ω3 = (u2,1 − u1,2)x3=0 + O(ε/δ). (4.5)

The leading terms of the horizontal vorticities ω1 and ω2 are of O(δ), both of which
are much smaller than that of the vertical vorticity (∼ O(1)).
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4.4. Free-surface signatures

Accompanying the anisotropic turbulence features near the free surface are vortices
with dominant vertical components, ω3, which emerge on the free surface from random
initial vorticities throughout the evolution. Figure 18 shows the vorticity contours on
the free surface at t = 0 and 32.5. The initial turbulent field has been constructed
here such that the normal vorticities have small values and are isotropic, lacking any
prescribed structures. As the turbulent flow evolves, dramatic signatures of counter-
rotating surface-normal vortices appear on the free surface. Examples of prominent
counter-rotating vortex pairs at t = 32.5 are located near (x1, x

+
2 /x

−
2 ) = (2,−2/− 4),

(3.6,−4/ − 2.8) and (0.4,−4/4), where x+
2 /x

−
2 represents the x2 coordinate of the
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Figure 19. Snapshots of the velocity vectors and the vertical vorticity contours on the free surface
at t = 25 (a, d), 27.5 (b, c) and 30 (c, f), showing the emergence of the counter-rotating vortex pair.
21 contour levels are shown from ω3 = −2 to 5.

positive/negative vortex. It should be noted that the (0.4,−4/4) pair actually appears
at (0.4,−4/ − 6.5), since the periodic condition is imposed in the x2-direction. The
emergence and the subsequent evolution of this particular counter-rotating vortex
pair are focused upon by showing in figure 19 the normal vorticity ω3 contours on
the mean free surface and the corresponding velocity vectors (u1, u2) at successive
time intervals (t = 25, 27.5 and 30). The velocity vector field at t = 25 clearly shows
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Figure 20. Snapshots of the free-surface deformation and the surface pressure contours in the same
area as figure 19 at t = 25 (a, d), 27.5 (b, c) and 30 (c, f). 21 contour levels are shown from η = −0.02
to 0.02 and from p = −0.05 to 0.05.

an upwelling (splatting) event with a divergent velocity field, which then evolves into
a pair of counter-rotating vortices. These vortices appear, grow and then vanish on
the free surface, and the whole sequence propagates downstream with the mean flow
field. This organized evolution from an upwelling to a counter-rotating vortical flow
occurs randomly on the free surface throughout the whole simulation time.

The corresponding sequences of the contours of the free-surface deformation η and
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the dynamic pressure p are shown in figure 20. At the stage of upwelling (t = 25),
the free surface rises and forms a hump near the centre of the velocity divergence. As
this hump propagates downstream, two dimples form in the wake of the hump with
the centres of the depressions coinciding with those of the counter-rotating vortex
pair (t = 27.5, 30). The pressure contours are well correlated with the free-surface
deformation contours. This is not unexpected in that for a low Froude number flow,
the timescale of the vortical motion is larger than that of the free-surface motion,
and the pressure on the free surface is mainly balanced by the hydrostatic pressure,
i.e. p ≈ η/Fr2. The normal vorticity centre, the free-surface trough and the low-
pressure region occupy the same area on the free surface in the formation of a
counter-rotating vorticity connection. This reconfirms the finding that the centre of
the coherent structure is a pressure trough (Lesieur, Comte & Métais 1995).

From the experimental or the remote-sensing point of view, it would be desirable
to be able to correlate the free-surface roughness with the surface or near-surface
flow properties. The cross-correlation coefficients, C(η, p), C(|p|, |ω3|), C(|ω3|, |η|) and
C(|ω3|, |η|; η < 0) , where C(f, g) ≡ 〈f g〉/(〈f2〉1/2〈g2〉1/2), are shown in figure 21. The
free-surface deformation and pressure have a very strong correlation as predicted.
The correlation between the normal vorticity and the free-surface elevation (also
the pressure), however, is lower and remains only between 50% and 60% through
the whole simulation. Although free-surface dimples form in the same area as the
peaks of the vertical-vorticity connections, the correlation between the free-surface
depressions and the vertical vorticity, C(|ω3|, |η|; η < 0), is also poor.

To further examine the correlations between the free-surface geometric properties
and the tangential vorticities, the kinematic surface condition (2.3) is applied, and the
expressions for the streamwise and spanwise surface vorticities (4.4) and (4.5) become

ω1 ≈ 2[η,t2 +(u1,12 + u2,22)η + u1,2η,1 + (u1,1 + 2u2,2)η,2 + u1η,12 + u2η,22], (4.6)

ω2 ≈ −2[η,t1 +(u1,22 + u2,12)η + u2,1η,2 + (2u1,1 + u2,2)η,2 + u2η,12 + u1η,11]. (4.7)

On the right-hand sides of (4.6) and (4.7), the first terms are associated with the
vorticity due to free-surface unsteadiness, while the remaining terms correspond to
the free-surface advection effects resulting from the convective terms in the kinematic
boundary condition (2.3). In particular, the terms u2η,22 and u1η,11 are the well-known
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Figure 22. Time evolution of the correlation coefficients between the free-surface vorticity (stream-
wise (a), spanwise (b) and vertical (c)) and the free-surface roughness and its first- and second-order
derivatives: C(ωi, η) (———), C(ωi, η,11) (- - - - -), C(ωi, η,22) (− ·− ·−), C(ωi, η,12) (· · · · · ·), C(ωi, η,1)
(— — —) and C(ωi, η,2) (− ·· − ·· −).

curvature effect (Batchelor 1967). These vorticities vanish when the surface is flat,
i.e. the free surface becomes a free-slip boundary. This means that the tangential
surface vorticities are mainly attributed to free-surface roughness. The evolution of
the correlation coefficients between the free-surface vorticities and the free-surface
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Figure 23. Bundle of vortex lines at t = 25 displaying the horseshoe-like vortical structure.
Perspective (a), side (b), top (c) and front (d) views of the vortex lines are shown.

roughness and its first- and second-order derivatives in (4.6) and (4.7) are shown in
figure 22. For comparison, the correlations for the vertical vorticity are also presented.
The correlations between the surface roughness and its derivatives with the tangential
surface vorticities are apparently better than with the normal vorticity. For most of
the surface roughness terms, the correlation coefficients for the tangential surface
vorticities are between 60% and 70%. The linear curvatures, η,11 and η,22, reveal
the best correlations of all, especially the η,11 term of the spanwise vorticity. The
correlations between the curvature η,11 and the spanwise vorticity are between 80%
and 90%. This is mainly caused by the convection of the streamwise mean flow
and also the impinging spanwise vortical flow, which are discussed later. Such a
major induction of the tangential surface vorticity by the free-surface curvatures and
the underlying advections was also observed in the two-dimensional interactions of
vortical flows with a clean free surface (Tsai & Yue 1995).

4.5. Underlying coherent vortical structures

For wall-bounded shear flows, horseshoe (or hairpin) structures in the vorticity field
have previously been identified in both experiments and numerical simulations (see
e.g. Grass, Stuart & Mansour-Tehrani 1991 and the review by Robinson 1991). Such
vortical structures have also been observed in homogeneous turbulent shear flows (e.g.
Rogers & Moin 1987). The counter-rotating vorticity connection to the free surface
implies that horseshoe vortices formed in the underlying mean shear flow may be
responsible for such a dramatic surface feature.

The underlying coherent vortices are sought by tracing vortex lines beginning
from normal vorticity maxima on the free surface after the connections appear. The
submerged region around the vertical centreplane of the two opposite vortices is then
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Figure 24. Bundle of vortex lines at t = 27.5 displaying the connecting vortical structure.
Perspective (a), side (b), top (c) and front (d) views of the vortex lines are shown.

searched for the vortex lines before the connection. Figures 23 and 24 show typical
vortex lines at t = 25 and 27.5 (before and after the appearance of the counter-rotating
surface vortices). Different perspectives of the vortex lines are shown to illustrate the
shapes, orientations and positions of the structures. At t = 25, the vortex lines display
Ω-shaped horseshoe structures with two elongated legs in the streamwise direction.
The direction of vorticity is counterclockwise along the vortex lines moving towards
the negative x2-direction. The two legs extend downstream and downward and then
bend outward to form another horseshoe structure with head downward. These vortex
lines move upward toward the free surface, and the head of the horseshoe vortex
impinges upon the free surface. As the horseshoe vortex continues approaching the
free surface (t = 27.5 in figure 24), the head of the vortex breaks, and the two
shoulders reconnect to the free surface to form two counter-rotating normal vorticies
on the surface. The detailed connection processes of the horseshoe vortex to the free
surface are discussed in the next subsection.

The definition of a coherent vortical structure has been the subject of vigorous
debate. Several eduction techniques have been suggested to identify the coherent
structures in a turbulent flow. Examples of these methods include: the use of the
isosurfaces of enstrophy ωiωi (e.g. Bisset, Antonia & Browne 1990; Hussain &
Hayakawa 1987), the eigenvalues of the velocity gradient tensor ui,j (e.g. Chong,
Perry & Cantwell 1990), the discriminant of the ui,j tensor (e.g. Blackburn, Mansour
& Cantwell 1996), and the eigenvalues of the Si,kSk,j + Ωi,kΩk,j tensor, where Si,j =
(ui,j + uj,i)/2, Ωi,j = (ui,j − uj,i)/2 (Jeong & Hussain 1995), among many others. It
is still debatable as to which of these methods is the ‘best’ in identifying coherent
vortical structures. To further visualize the three-dimensional vortex structures in
figures 23 and 24, in which the traces of vortex lines are used as indicators of the
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Figure 25. Isosurfaces of the enstrophy ωiωi = 1.6 at t = 25 showing the horseshoe vortex
structure. The traces of vortex lines are also shown.

structures, isosurfaces of the enstrophy ωiωi are shown in figures 25 and 26 for t = 25
(horseshoe structure before the connection) and t = 30 (after the connection). In order
to distinguish the focusing structures in the various isosurfaces, the corresponding
vortex lines are also shown. The vortex lines and the isosurfaces display similar shapes
and are at the same spatial positions. It should be noted that the vortex lines are
traced beginning from the vortex connections on the free surface or the head portion
of the vortex near the free surface.

To further confirm the existence of horseshoe vortical structures and the scenario of
the vortex connection in the present free-surface turbulent shear flow, the vorticity field
is analysed in a manner similar to that in Moin & Kim (1985). The inclination angles
of the vorticity vector to the streamwise and spanwise directions: θi = tan−1(ω3/ωi),
i = 1, 2, are calculated at each grid point. The principal values of the angles are defined
as −π < θi 6 π. Histograms showing the distribution of θi at t = 27.5 at different
depths from the free surface are illustrated in figure 27. The histograms are calculated
by sorting θi at all the grid points in the horizontal plane with the contribution
of each grid point weighted by the normalized magnitude of the projected vorticity
vector (ω2

i + ω2
3)/〈ω2

i + ω2
3〉.

In the immediate vicinity of the free surface (x3 = −0.0313 in figure 27a), the
distribution of θ1 is highly concentrated around ±90◦, whereas that of θ2 is around
±90◦ and ±180◦. The vorticity field for such a distribution represents dominant
vertical (ω3) and spanwise (ω2) vorticities which correspond to the vortex connection
onto the free surface and the head portion of the horseshoe vortex. Moving away
from the free surface (x3 = −0.1 and −0.5 in figure 27b, c), the peaks of θ1 reduce
and shift towards −45◦ and 135◦, indicative of the inclination of the vortex lines
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Figure 26. Isosurfaces of the enstrophy ωiωi = 1.6 at t = 30 showing the connected vortex
structure. The traces of vortex lines are also shown.

with respect to the free stream and consistent with the inclined elongated legs of
the structures in figures 23 and 24. The peaks of the θ2 distribution at ±180◦ away
from the free surface are mainly attributed to the spanwise vorticity of the primary
two-dimensional shear flow.

4.6. Free-surface/vortex interaction processes

For the limiting case of Fr = 0, the free surface becomes a free-slip boundary, and the
impinging of a vortex onto the surface is identical to the collision of two symmetric
vortices with opposite signs. The phenomenon of the breaking and reconnecting of two
colliding vortices of various configurations has recently become a topic of considerable
research interest. Some examples of numerical simulation of the phenomenon include
Melander & Hussain (1989), Kida, Takaoka & Hussain (1991) and Shelley, Meiron
& Orszag (1993) among others. Of particular relevance is the reconnection model of
Saffman (1990) and its numerical verification by Shelley et al. (1993) and it is adopted
here to elucidate the dynamics of the breaking and reconnecting to the free surface of
the underlying horseshoe vortices. The present study is different from most of these
simulations in that the configuration of the vortical flow here is not prescribed but
arises from the evolution of a turbulent shear layer.

Figures 28 to 30 present the spanwise vorticity ω2, the velocity–strain rate u2,2

and the vorticity dissipation rate ω2,ii/Re on the symmetric plane (x1, x3-plane) at
t = 20, 22.5 and 25 of the particular impinging horseshoe vortex and the consequent
surface-connected vortex pair discussed in §§4.2 and 4.3. The arrows on the x1-axis
indicate the x1 positions of the heads of the horseshoe vortices before the connection
or the surface vorticity maxima after the connection.
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Figure 27. Distribution of the inclination angles θ1 (———) and θ2 (- - - - -) between the vorticity
vectors and the projection of the vectors onto the (xi, x3)-planes at t = 27.5 for depths x3 = −0.0313
(a), −0.1 (b) and −0.5 (c).

The core of the head of the horseshoe vortex is clearly shown in figure 28 at t = 20
and 22.5. As the vortex approaches the free surface, the vorticity core begins to deform
and becomes flattened (figure 28a, b). Meanwhile, the positive spanwise velocity–strain
rate, u2,2, increases and becomes aligned with the vorticity maximum (figure 29a, b).
This indicates that the head of the horseshoe vortex is stretched spanwise, which
leads to an increase in the vorticity strength. Accompanying the increase in the
strain rate is the rise in vorticity dissipation due to the viscosity (figure 30a, b). The
distribution of the vorticity dissipation is very localized, being concentrated near
the spanwise-vorticity centre. The connection processes, therefore, are determined by
the competition between the effects of vortex stretching and dissipation. For the
connection to occur, the viscous cancellation of the vorticity continues until it exceeds
the stretching effect. Then the dynamics are dominated by the viscous dissipation,
and the head of the horseshoe vortex decays (figure 28c). The core of the spanwise
vortex continues to shrink and the vorticity is annihilated with the approach of the
horseshoe vortex towards the free surface. The two shoulders of the horseshoe vortex,
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Figure 28. Sequences of the spanwise vorticity ω2 on the symmetric plane (x1, x3-plane) at t = 20
(a), 22.5 (b) and 25 (c) of the particular impinging horseshoe vortex and the consequent sur-
face-connecting counter-rotating vortex pair shown in figures 23 and 24. 21 contour levels are
shown from ω2 = 0 to 6.

with mainly counter-rotating vertical vorticity, then reconnect onto the free surface
and form the counter-rotating vortices on the surface.

So far the disconnection processes of a single horseshoe vortex and its subsequent
reconnection to the free surface have been examined. Accordingly, what has been
clarified is the issue that the vertically attached vortical structures on the free surface,
which have been observed in previous numerous experiments and numerical simula-
tions, may actually originate from approaching surface-parallel vortices, such as the
head portion of bursting horseshoe vortices in an open-channel flow. These discon-
nection and reconnection events are very localized and are solely associated with the
coherent vortices. In the following subsection, it is shown that such localized intense
events indeed contribute a dominant portion of the fluctuation vorticity dynamics
near the free surface. This is done by examining the components in the enstrophy
balance and the vorticity transport near the free surface.
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Figure 29. Sequences of the velocity–strain rate u2,2 on the symmetric plane (x1, x3-plane) at
t = 20 (a), 22.5 (b) and 25 (c) of the particular impinging horseshoe vortex and the consequent
surface-connecting counter-rotating vortex pair shown in figures 23 and 24. 21 contour levels are
shown from ω2 = 0 to 1.

4.7. Enstrophy balance and vorticity transport

The enstrophy balance equation of the vorticity field is given as

DΩi
Dt

= ωiωjui,j +
1

Re
(Ωi,jj − ωi,jωi,j), (4.8)

where the enstrophy Ωi ≡ 1
2
ω2
i , and the summation is implied only for the j index.

The ωiωjui,j term in (4.8) represents the production of the enstrophy Ωi due to the
stretching or compression of ωi vorticity when i = j, or because of the rotation from ωj
to ωi when i 6= j. The last two terms in (4.8) represent viscous diffusion and dissipation,
respectively. The previous observation of the horseshoe vortex connection to the free
surface implies that the major spanwise vortex dynamics near the free surface are
vortex stretching and viscous dissipation. Figure 31(a) presents the vertical variations
of the average spanwise enstrophy transport terms 〈ω2ωju2,j〉 and 〈Ω2,jj − ω2

2,j〉/Re
at t = 30. Approaching the free surface, both the vorticity stretching and dissipation
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Figure 30. Sequences of the vorticity dissipation rate ω2,ii/Re on the symmetric plane (x1, x3-plane)
at t = 20 (a), 22.5 (b) and 25 (c) of the particular impinging horseshoe vortex and the consequent
surface-connecting counter-rotating vortex pair shown in figures 23 and 24. 21 contour levels are
shown from ω2 = 0 to 4.

rates increase to significant magnitudes but with opposite signs, and then decrease to
negligible values. Compared to vortex stretching, the vortex rotation from streamwise
and vertical to spanwise vorticity is much less significant. This confirms the notion
that the production of the normal vorticity on the free surface is induced by the
connecting processes discussed above. The vortex rotation events from horizontal to
vertical vanish near the free surface.

Once the connecting processes of the vortex to the free surface are complete, the
connected counter-rotating vortices move downstream with the mean velocity, and
the magnitudes of vorticity increase at first but then decay with the sequences of
ω3 contours shown in figure 19 for t = 25, 27.5 and 30 and figure 32 for t = 30,
32.5 and 35. In figure 31(b) the vertical variations of the average vertical enstrophy
transport terms 〈ω3ωju3,j〉 and 〈Ω3,jj − ω2

3,j〉/Re at t = 30 are plotted. The dynamics
of vertical vortex stretching remain effective up to the free surface, where the vortex
rotation vanishes. The viscous vorticity decay rate decreases on approaching the free
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Figure 31. Vertical variations of the average (a) spanwise enstrophy transport terms 〈ω2
2u2,2〉

(———), 〈ω2ω1u2,1〉 (- - - - -), 〈ω2ω3u2,3〉 (· · · · · ·) and 〈Ω2,jj − ω2
2,j〉/Re (— — —); and (b) ver-

tical enstrophy transport terms 〈ω2
3u3,3〉 (———), 〈ω3ω1u2,1〉 (- - - - -), 〈ω3ω2u2,2〉 (· · · · · ·) and

〈Ω3,jj − ω2
3,j〉/Re (— — —) at t = 30.

surface; however, it still remains at a finite value, suggesting that the annihilation
of the surface-connected vortex may also be caused by the competition between the
vertical vortex stretching and viscous dissipation. The evolution of the surface ω3

dissipation rate 〈Ω3,jj − ω2
3,j〉/Re is also shown in figure 32 with the corresponding

ω3 contours. The regions of maximal viscous dissipation coincide with the surface-
connected vortices. This observation indicates that after the reconnection of the
broken horseshoe-vortex legs to the free surface, stretching and viscous dissipation
are the only mechanisms responsible for the annihilation of the counter-rotating
connected surface vortices.

To further elucidate the vortex dynamics of the underlying shear flow, the vorticity
transport equation

Dωi
Dt

= ωi,t + ujωi,j = ωjSij +
1

Re
ωi,jj , (4.9)

where Sij = 1
2
(ui,j + uj,i) is the strain-rate tensor, is projected onto the directions

tangential and perpendicular to the vorticity vector with ŝ = si and t̂ = ti as
the directional unit vectors. The vorticity transport rate associated with velocity
strain can then be decomposed into the stretching (also compressing) rate along the
vorticity vector, ψsi = (ωjSljsl)si and the turning rate normal to the vorticity vector,
ψti = ωjSij − ψsi . Similarly, the transport rate associated with viscous dissipation
can also be decomposed into χsi = (ωl,jjsl)si/Re and χti = ωi,jj/Re − χsi , which are
tangential and perpendicular to the vorticity vector, respectively.

The vertical distributions of the variance of the vorticity transport rate are shown
in figure 33 for t = 30 and 60. The distributions are qualitatively similar for the
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Figure 32. Snapshots of the vertical vorticity contours and the average vertical enstrophy dis-
sipation rate on the free surface at t = 30 (a, d), 32.5 (b, c) and 35 (c, f), showing the annihila-
tion of the counter-rotating vortex pair. 21 contour levels are shown from ω3 = −2 to 5 and
〈Ω3,jj − ω2

3,j〉/Re = −2 to 0.

vorticity fields at t = 30 and 60. The vorticity compressing rate (ψsi < 0) is negligible
throughout the entire depth compared to the vorticity stretching rate (ψsi > 0).
The vortex turning and stretching rates are comparable for the submerged (x3 <
−0.2 approximately) vorticity field. Near the free surface, the turning rate reduces
dramatically. The stretching rate, nevertheless, increases to its maximum near the free
surface. Slightly above the depth where the stretching rate reaches its maximum, the
viscous dissipation rate also increases to a maximum. At this maximal dissipation rate,
the dissipation is mainly contributed by the velocity deformation along the vorticity-
vector direction, i.e. 〈(χsi )2〉 � 〈(χti)2〉. These observations of vorticity transport budget
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Figure 33. Vertical distributions of the variance of vorticity transport rate associated with velocity
strain (a, c): 〈(ψsi )2〉 (———), 〈(ψti )2〉 (— — —), 〈(ψsi )2〉 with ψsi > 0 (- - - - -) and 〈(ψsi )2〉 with ψsi < 0
(− ·− · −), and the transport rate associated with viscous dissipation (b, d): 〈(χsi + χti)

2〉 (− ·· − ·· −),
〈(χsi )2〉 (———) and 〈(χti)2〉 (— — —), for t = 30 (a, b) and 60 (c, d).

confirm the previously discussed scenarios regarding the breaking and reconnection
of the horseshoe vortices to the free surface.

Right on the free surface, the turning rate of the vorticity 〈(ψti )2〉 vanishes, and
the vortex dynamics are controlled by stretching and dissipation. The dissipation rate
along the vorticity vector (vertical) direction is larger than on the horizontal plane
(〈(χsi )2〉 > 〈(χti)2〉). This, again, supports the mechanism discussed earlier regarding the
annihilation of the connected vortices.

5. Concluding remarks
The interactions between a free surface and an underlying shear layer with ini-

tially isotropic three-dimensional turbulence are investigated in this paper. Some key
findings of the present numerical simulation results are:

(i) Accompanying the quasi-two-dimensionality of the flow field approaching the
free surface, the macroscales of the turbulence near the surface increase, and the
energy of the low-wavenumber modes appears to increase. Both the pressure–strain
correlations and the viscous dissipation in the velocity fluctuations were shown to
contribute to the anisotropic distribution of turbulence energy near the free surface.

(ii) Coherent horseshoe vortices, which evolve from the initial horizontally homoge-
neous turbulent shear flow, impinge upon the free surface, break and reconnect to the
surface. During the process of connection, two dimples (depressions) form on the free
surface near the maximal connected vorticity centres. The global correlation between
the free-surface roughness and the surface normal vorticity, however, is poor. The
well-known free-surface curvatures and tangential vorticities, on the other hand, have
the best correlations among the other surface roughness and vorticity components.

(iii) Near the free-surface, vortex turning vanishes; instead, stretching as well



Turbulent shear layer under a free surface 275

as viscous dissipation and diffusion along the vorticity-vector direction dominate
the vorticity transport budget. The vortex stretching events are enhanced by the
blocking effect of the free surface, which deforms the impinging vortex cores and
leads to intensified velocity strain. This results in the continuous growth of the
viscous dissipation and diffusion of the stretched vorticity. It also explains the fact
that although the stretching mechanism generates small-scale vortices, the dominant
viscous effect effectively damps out these short-wavelength modes, and the kinetic
energy accumulates in the low-wavenumber modes.

The author is grateful to the anonymous reviewers for their constructive comments
which have led to an improved presentation of these results. This research was started
while the author was affiliated to the Massachusetts Institute of Technology and has
been supported by grants from the Office of Naval Research, though the computations
and the major part of the analyses were finished at Taiwan Ocean University and
sponsored by the National Science Council of the Republic of China (grants NSC
85-2611-M-019-007 and 86-2611-M-019-002). Supercomputing time was provided by
the National Center for High-Performance Computing of Taiwan and the Taiwan
Ocean University Computer Center.

REFERENCES

Anthony, D. G. & Willmarth, W. W. 1992 Turbulence measurements in a round jet near a free
surface. J. Fluid Mech. 243, 699–720.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

Bisset, D. K., Antonia, R. A. & Browne, L. W. B. 1990 Spatial organization of large structures in
the turbulent far wake of a cylinder. J. Fluid Mech. 218, 439–461.

Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in
turbulent channel flow. J. Fluid Mech. 310, 269–292.

Borue, V., Orszag, S. A. & Staroselsky, I. 1995 Interaction of surface waves with turbulence:
direct numerical simulation of turbulent open-channel flow. J. Fluid Mech. 286, 1–23.

Brumley, B. H. & Jirka, G. H. 1987 Near-surface turbulence in a grid-stirred tank. J. Fluid Mech.
183, 235–263.

Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional
flow field. Phys. Fluids A 2, 765–777.

Gharib, M. 1994 Some aspects of near-surface vortices. In Proc. Twelfth US National Congress
of Applied Mechanics, June 1994, Seattle, WA (ed. A. S. Kobayashi), Appl. Mech. Rev. 47,
S157–S163.

Gharib, M. & Weigand, A. 1996 Experimental studies of vortex disconnection and connection at
a free surface. J. Fluid Mech. 321, 59–86.

Grass, A. J., Stuart, R. J. & Mansour-Tehrani, M. 1991 Vortical structures and coherent motion
in turbulent flow over smooth and rough boundaries. Phil. Trans. R. Soc. Lond. A 336, 35–65.

Handler, R. A., Swean, Jr., T. F., Leighton, R. I. & Swearingen, J. D. 1993 Length scales and
the energy balance for turbulence near a free surface. AIAA J. 31, 1998–2007.

Hunt, J. C. R. 1984 Turbulence structure and turbulent diffusion near gas–liquid interfaces. In Gas
Transfer at Water Surfaces (ed. W. Brutsaert & G. H. Jirka), pp. 67–82. D. Reidel.

Hunt, J. C. R. & Graham, J. M. R. 1978 Free-stream turbulence near plane boundaries. J. Fluid
Mech. 84, 209–235.

Hussain, A. K. M. F. & Hayakawa, M. 1987 Eduction of large-scale organized structure in a
turbulent plane wake. J. Fluid Mech. 180, 193–229.

Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.

Kida, S., Takaoka, M. & Hussain, F. 1991 Collision of two vortex rings. J. Fluid Mech. 230,
583–646.

Komori, S., Murakami, Y. & Ueda, H. 1989 The relationship between surface-renewal and bursting
motions in open-channel flow. J. Fluid Mech. 203, 103–123.



276 W.-T. Tsai

Komori, S., Nagaosa, R., Murakami, Y., Chiba, S., Ishii, K. & Kuwahara, K. 1993 Direct numerical
simulation of three-dimensional open-channel flow with zero-shear gas-liquid interface. Phys.
Fluids A 5, 115–125.

Komori, S., Ueda, H., Ogino, F. & Mizushina, T. 1982 Turbulence structure and transport
mechanism at the free surface in an open channel flow. Intl J. Heat Mass Transfer 25, 513–521.

Lam, K. & Banerjee, S. 1992 On the condition of streak formation in a bounded turbulent flow.
Phys. Fluids A 4, 306–320.

Leighton, R. I., Swean, Jr., T. F., Handler, R. A. & Swearingen, J. D. 1991 Interaction of
vorticity with a free surface in turbulent open channel flow. AIAA Paper 91-0236.
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